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Devil's staircase and harmless staircase in the smecti€;, phase in an electric field
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The unwinding of the short pitch helical smec@é—structure in an external electric field is studied within
a discrete phenomenological model. It is found that the pitch increases quasicontinuously at low electric fields
and is commensurate with the smectic layer thickness at any field. The sequence of stable structures recalls the
once popular and then abandoned devil’s staircase model. At larger fields the pitch grows discontinuously in
steps of one smectic layer, forming a harmless staircase. Taking into account the achiral next-nearest-layer
interactions the final transition to the unwound structure is found to be discontinuous.
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Elongated chiral molecules of polar smectics form IayeredSmC’; phase. We compare the continuous and discrete for-
structures. If molecules are tilted with respect to the smectienalisms and discuss the appropriateness of their application
plane, it can be concluded by symmetry arguments that the different circumstances.
smectic layers are polar. This theoretical argument aimost 30 The helicoidally modulated layered structure of the Sm-
years ago led to the synthesis of the first ferroelectric liquidC, phase in an external electric field is described by the tilt
crystals[1]. Fifteen years ago, in the search for materialsorder parameteg. In the free energy, only the terms that
with higher polarization, antiferroelectric liquid crystals were account for interlayer interactions and the coupling with the
discovered2]. Their phase diagram revealed several differ-€lectric field are present,

ent phases which remain experimental and theoretical chal- 1 1 1

lenges today. Gi=2> (Ealgi Gt §f§i X a1t éaz§i &2~ E- Pi)-
In this paper we concentrate on the sme@jctSm-C)) !

phase. For many years it was explained as a set of structures (1)

wher(_e molecules_in_ a_dja_cent Iayers_ form a peri(_)dic pattern o')i'he a; andf terms account for the achiral and chiral inter-
synclinic and anticlinic tilt boundaries. The period was Sug'actionls between the nearest-neighboring layi@k The

gested to range from a few up to ten and more layers. By, ;. next-nearest-layer interactions are described bgthe
qhanglng the tem_perature or applied electric field the r_epetlt—erm_ The signs of the parameteas and a, determine the
:!ve patlter?:] i’nhd |tsh Ieng(tjh were rip:o'rte:jj to chatnge d;sgo preferred relative orientation of tilts in interacting layers. If
|n(ljjou$y[ t].' € p3ase Lla}[grar:;]o dalnle’ V‘;afs Interpre Z Ia . anda, are positive, anticlinic tilts are favored, and if they
a devil's staircasg3-7). Later, the devil's staircase mode are negative, synclinic tilts are favored. The chiral interac-

was d_|sproved when the results of resonant x-ray scattering, always induce a helical variation of tilt along the layer
experiments, a method that enabled direct structural Observ?formal The last term in Eq) describes the coupling of

o e o8 e, sl oda o EZ09eCC pORTZRLOT® =(£ 1Py of each smect
the Sm(?* hase[9,101. It was SX crimentall gconfirmed ayer with the external field. The polarizatid® is perpen-
a P T P y dicular to the average tilt of the molecules in a particular

that the Sm€; phase has a tilted, short pitch helicoidally layer and proportional to the magnitude of the tilt, ands

odlled sclre Wil I pich i SEnerel CommENie ayer norml
y ) The equilibrium structure is given by a set of il

Calllﬁdtr:izea(r:tlic():(lzek vr\?eogﬁl)\(/)vf ttr?aet tshfzi‘ir?srgetl:(naiative explanations,, 1COS®:. Sin i}, whered is a magnitude ang; describes
of the SME" phase should not be considered as Eom Ietelthe direction of the tilt in théth smectic layer. FOE=0, the

. . o P ; COmMPeteNtable structure is helicoidally modulated: the phase differ-
inconsistent. When an incommensurate short pitchSm-

phase is exposed to an external electric field, its structurgzgea 2;“';;Ignn?'%ﬁggnﬁel?gs eft Li ; ei(onesctgg %’r'rln_g? the
deforms and locks to commensurate periods. The unwindin =70 i P

process at small electric fields consists of stepwise structur%table solution into the expressiet), the free energy be-
) omes
changes between commensurate structures, typical for the

devil's staircase behavior. At larger fields, when approaching
the critical field for complete unwinding, discontinuous
changes reveal the harmless staircase beh@vijoiThe re-
sults are consistent with the experimef$ that motivated The phase difference, that minimizes Eq(2) for a chosen
the introduction of the first devil's staircase models for theset of model parameters solves the equation

62 a
Gy(a) = ?02 <a1c05a +fsina+ chos 2a> )
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f =atanag + azsin ag. (3 S '\;' ' '15\}4 T /ér'
. .. . . R B - \'1139 19 d.w.
The stable structure is helicoidal, with the zero-field pitch - E ’> %\’3, 18 :
po=2md/ ap=Ngyd, whered is the smectic layer thickness and R__p W
N is some real number. In genergy is incommensurate 8 VAT 1gﬂdomainwa"
with d. Expressingf anda, in units of |a|, we are left with < 4n / \';';'7"12 -
two parameter$/|a,| anda,/|a,| which define the zero-field Ao ==
pitch. We stress that for any givey infinite combinations of ” 7 ﬂ domaif wall p-25
model parametera,/|a;| andf/|a;| can be found satisfying " }f“ Q=4
Eq. (3). :
An external electric field that is parallel to the smectic TS LG I T DT
layer influences the structure. We do not consider the minor o5 9 11.3 7 21 2
influence on the magnitude of the tilt, i.e., the electroclinic — N S Y

effect. Minimizing the bulk free energgl) with respect to
the set of tilt phase angla; gives a set of nonlinear equa-  FIG. 1. Deformed helical structure in the presence of electric
tions. Although the pitch extends over a few layers only, it isfield, for p,=5 layers,a;=-1 K, a,/|a;|=0.3, f/|a;|]=-2.79, and
in general incommensurate with the layer thickness and thE=1.19 kv/mm. Commensurate perid? extends over 25 layers
number of equations is therefore infinite. and consists of three subperiods of six and one of seven laers,
In the numerical procedure inevitably only a finite number=4. The structures of two domain walls are shown on the insets.
of equations can be treated. The finite number of equation®ne is between two subperiods with six laygninth and tenth
and appropriate boundary conditions do not allow the periodayers, and the other between subperiods with six and seven layers
of the structure to change. However, we expect the pitch té15th and 16th layers
grow with the field. We solved the problem of the growing
period by taking several ideal helices as the initial approxi-origin of the appearance of the commensurate period of the
mations of the zero-field structure. The helical structuresstable structure also, which locks to the integer number of
have different pitchepp o all commensurate with the smec- smectic layers. It is energetically favorable to build subperi-
tic layer thickness and therefore representable with rationabds which differ in lengths by one layer and have similar
numberspp o=(P/Q)d. The integerP is the commensurate domain walls, and this is a general conclusion.
period andQ is the winding number of the structure. Periodic At a certain field(the closest tpthe equilibrium structure
boundary conditions reduce the number of equations to & the one with the minimum energy among all that were
controllable number. We analyze how various zero-field hecalculated. The commensurate periecf the stable struc-
lical structures transform in the electric field by iteratively ture consists of subperiods of lengtil andk subperiods of
solving a linearized set of equations. Bt= 0 the given zero- lengthM+1. The integer§ andk do not have a common
field structure is deformed within one pitch, but the pitchdivisor, and if one of them is O, the other one is 1, gnd
remains the same. +k=Q. There argfM +k(M+1) layers in one periodP. The
We check a variety of pitche@p to P=200 andQ=5)  pitch p of the structure is the average length of the subperiod
and calculate and compare the energies of the correspondingthin one periodP. With growing electric field,j and k
structures. The structure with the least energy among thehange so the portion of longer subperiéd§ +k) increases
structures we have studied is close enough to the equilibriurantil eventually all subperiods have the same lengthViof
structure. Important general conclusions can be drawn on thel layers. On further increasing the field, subperiods with
basis of our results. M+2 layers appear. The sequence of stable structures in an
The numerical minimization shows that all the calculatedincreasing electric field is the devil's staircase. The process is
structures have domains formed by adjacent layers whickssentially discontinuous but the commensurate pédtiodn
have a component of polarization in the direction of the elecbe long, with a large number of subperiods within it. The
tric field (Fig. 1). The domains are separated from each otheexperimental observations would inevitably show a continu-
by domain walls, which are formed by a few layers that haveous dependence on observable quantities. Therefore we call
an unfavorable orientation of polarization with a componenthis procesgjuasicontinuous
opposite toE. We found that all domain walls are similar, At large fields close to the critical fiel&,, where the
almost symmetric around the most unfavorable orientation o$tructure eventually unwinds completely, all subperiods have
polarization antiparallel t&. There are always two neigh- the same length. The pitgh of the minimum energy struc-
boring layers in the middle of each domain wall, which haveture locks to the integer number of smectic layers and further
polarizations approximately at anglest 8 with respect to  on increases in steps of one layer. We call the prostss-
the direction oft (see Fig. 1 wise unwinding and it is similar to harmless step behavior
We call the region from the middle of a domain wall to [7]. The final step can be either drastically discontinuous,
the middle of the next domain wall a subperiod. At any field,from some finite length pitch belovigy to infinite in the
any calculated structure with pitghs o is built only from  unwound structure abovg, if a, is large, or stepwise, i,
subperiods wittMp o andMp o+ 1 layers, wherdlp o is the  is small or zerg(see Fig. 2
integer part ofP/Q. Not even in a single layer of any struc-  From Fig. 2 we also see that different combinations of
ture is the polarization perfectly antiparallelEo This is the  a,/|a;| and f/|a;| which all define the same zero-field pitch
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FIG. 2. The pitch grows with the field as is shown here for a  FIG. 3. Induced apparent tilt angl@) in dependence on the
structure withpy=>5 layers. For the material and model parameterselectric field, for the structure withy=5 layers and different values
appropriate values were taken, representing a typical substan&¥ the parametea,.
forming the SmE, phase: Py=100 nC/cm, §,==/20, and
a;/a=-1 K wherea=4x 10* J/m? [13]. The parametesi, was var-  apparent tilt dependence on the electric field obtained would
ied between 0 anthy|, andf was defined by Eq(3) to lead topy  then nicely reproduce the experimentally observed depen-
=5 layers in every case. At low fields the pitch grows quasicontin-gence in[3]: The reported stepwise increase (@ can be
uously and jumps discontinuously in steps of one layer at Iargedea”y seen from the plot oi(6)/JE in dependence of
fields. At critical field Ey the structure unwinds completely. The ;

. B . » therein and therefore lends support to our model. To our
pitch grows faster wittE if a, is larger. The curves end at critical knowledge there are no other experiments providing such

field E4. Discrete jumps of the pitch at low fields are numerical . id for di . h f the pitch with
artifacts, due to finite discreteness of the pitch net. The commens lirect evidence for discontinuous changes of the pitch wit

rate pitches, which were checked, are marked at the right side of th%leCtriC field. . L .
plot. We also examined the limitations of the continuum model

[11,12, which was widely applie*d in studies of the long
and therefore the same zero-field structure lead to much diitch helical structure of the Si@- phase. A link between
ferent evolution of the pitch with the field. Two general con- the discrete and continuum models can be obtained by con-
clusions are made. The first: the larger the contribution of thdinuization of the discrete model around the equilibrium bulk
achiral next-nearest-layer interactioas the faster the pitch helical structure. The relevant phase-angle-dependent part of
grows with the field. And the second: the final transition toth® continuum expansion of the bulk free energy density is
the unwound planar structure at critical fidlg also becomes  usually written ag11]
discontinuous, and the larger tla the lower the critical 2
field. gq,(z):}KGZ(d—d)) —Aezd—qb—EPcos¢,

The reason for the described behavior is the symmetry of 2 dz dz
the bulk free energy?) in dependence on the phase differ- whereK is the elastic constanty is the Lifshitz parameter,
ence a. With only the nearest-neighbor interactioghen  and P is the magnitude of polarization, proportional to the
a,=0) the free energys;(a) is symmetric around the mini- tilt ¢, P=6P,. Using discrete forms of derivatives, the dis-
mum, which defines the equilibriuaa,. The energy costs for crete model is translated to a continuum model and we get
additional uniform twisting or unwinding of the helix for the the relations between the parameters
sameAq are the same. A balance between the elastic forces
stabilizing the helical structure and the electrostatic forces Kz_g( a
stabilizing the unwound structure is achieved in the absence 2\ cosag

of next-nearest-layer interactions in a continuous distortion h —0/d d ibes th field ilibrium helical
and unwinding of the helical structure in the electric field V€€ do= o escribes he zero-ield equiiibrium hetica
until it is unwound completely(Fig. 2, the curve, corre- structure. The specific influences of each of the three param-

sponding tea,=0). If a,# 0, the symmetry around the mini- eters of the discrete modéh,,a,, andf) are hidden, when

mum is lost. In general, unwinding becomes energeticall;’comblnecj Into two parameters of the continuum model

favorable; therefore the unwound regions grow faster with"’md{\)'.The critical fieldE, where the complete continuous
the field, and the domain walls also become wider. The conl—m"\"mIIng of the helix occurs in the continuum mogif],

sequence is a discontinuous transition to completely un\-Nrltten with the parameters of a discrete model is

wound structure at some critical fiQEjd, Whe_re the indexd - 2K02q(2) \2 eag ay
stands for the analysis on the basis of a discrete mi@&jel E.= (Z) 5 =- (Z) ﬁ(ﬁ + azcoszao).
Discontinuous changes of pitch result in stepwise changes 0 @0
of the apparent tilt angl€d) which are presented in Fig. 3. The results of the discrete model were compared to the pre-
Additional consideration of the electroclinic effect would dictions of the continuum model. The critical fielg, found
smooth the calculated dependenced @f but mostly at high  numerically in the discrete model is smaller than the corre-
fields close to the critical field for complete unwinding. The sponding critical field within the continuum modEg}. The

+ azcoszao) andA =Kqp,
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W8——71 71 1 1 i crete model of antiferroelectric liquid crystals, strongly influ-
- Do ence the behavior of the helical short pitch smectic structure.
(- S L @ ,1 Large next-nearest interactions in general decrease the criti-
L e N-10 (=073) ; | cal electric fieldEy, as well as the critical field in the con-
Sl oo NS0 (=013 = | tinuum modelE.. The difference between thg and numeri-
Q cally obtainedE, is larger if next-nearest-layer interactions
" ] are larger. We see that two helical structures with the same
1.2+ - zero-field pitch behave differently in an electric field, if next-
L _ nearest-layer interactions are different for them.
. , , , In the absence of an electric field the helical pitch is de-
0 0.2 0.4 0.6 0.8 1 fined by different microscopic interactions: chiral nearest

B (No) layers of van der Waals origin and effective achiral next-

FIG. 4. Comparison of the results obtained from discrete ampearest.laye.rs of ﬂexqeleCtriC and ?Ie(.:trOStatic O.rleln Fo.r
a long time it was believed that chiral interlayer interactions,

described byf, are weak in comparison with achiral next-
nearest-layer interactions, describeddyy Since both types
of interaction have the same effect on the structure—they
largera,, the larger the difference between these two fieldsphoth favor the formation of the helix—it was impossible to
and also, the shorter the pitch, the larger is the differencexperimentally separate their influence on the structure. The
betweerE. andEy. This is an expected result: the continuum analysis presented paves the way for indirect observations of
expansion is appropriate, if variations of the order parameteghe f/a, ratio. The pitch of the zero-field structure can be
fr_om layer to Iayer are small, which is not true for a shortyptained by detailed ellipsometric measuremdat;14 or
pitch structure(Fig. 4). o resonant x-ray scatterini@] on thick (to minimize the influ-

To conclude, we found that the unwinding process of thénce of the surfacedree standing films. For the same ma-
short pitch structure of the SiG; phase in the external elec- (gig| the apparent tilt in dependence on the electric field can
tric field reveals both a quasicontinuous devil's staircase sejg measuregB] in planar cells and compared with the theo-
quence locked to the commensurate periodical structures gtjca] predictions for different ratio/a,.
lower fields and a stepwise harmless staircase at fields close
to the critical electric field for complete unwinding. The  The research was supported by the Ministry of Education,
next-nearest interactions, described byahéerm in the dis-  Science and Sport of Sloveni&rant No. Z1-329p

continuum calculations for helical structures with different pitches
anda, equal to zero. The larger the pitch, the closer are the result
of the two models.
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