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The unwinding of the short pitch helical smectic-Ca
* structure in an external electric field is studied within

a discrete phenomenological model. It is found that the pitch increases quasicontinuously at low electric fields
and is commensurate with the smectic layer thickness at any field. The sequence of stable structures recalls the
once popular and then abandoned devil’s staircase model. At larger fields the pitch grows discontinuously in
steps of one smectic layer, forming a harmless staircase. Taking into account the achiral next-nearest-layer
interactions the final transition to the unwound structure is found to be discontinuous.
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Elongated chiral molecules of polar smectics form layered
structures. If molecules are tilted with respect to the smectic
plane, it can be concluded by symmetry arguments that the
smectic layers are polar. This theoretical argument almost 30
years ago led to the synthesis of the first ferroelectric liquid
crystals [1]. Fifteen years ago, in the search for materials
with higher polarization, antiferroelectric liquid crystals were
discovered[2]. Their phase diagram revealed several differ-
ent phases which remain experimental and theoretical chal-
lenges today.

In this paper we concentrate on the smectic-Ca
* sSm-Ca

* d
phase. For many years it was explained as a set of structures
where molecules in adjacent layers form a periodic pattern of
synclinic and anticlinic tilt boundaries. The period was sug-
gested to range from a few up to ten and more layers. By
changing the temperature or applied electric field the repeti-
tive pattern and its length were reported to change discon-
tinuously[3]. The phase diagram obtained was interpreted as
a devil’s staircase[3–7]. Later, the devil’s staircase model
was disproved when the results of resonant x-ray scattering
experiments, a method that enabled direct structural observa-
tions in layered smectics[8], were found to be consistent
with the predictions of a discrete phenomenological model of
the Sm-Ca

* phase[9,10]. It was experimentally confirmed
that the Sm-Ca

* phase has a tilted, short pitch helicoidally
modulated structure with the pitch in general incommensu-
rate with the smectic layer thickness. The model is now
called the clock model of the Sm-Ca

* phase.
In this article we show that the first tentative explanations

of the Sm-Ca
* phase should not be considered as completely

inconsistent. When an incommensurate short pitch Sm-Ca
*

phase is exposed to an external electric field, its structure
deforms and locks to commensurate periods. The unwinding
process at small electric fields consists of stepwise structural
changes between commensurate structures, typical for the
devil’s staircase behavior. At larger fields, when approaching
the critical field for complete unwinding, discontinuous
changes reveal the harmless staircase behavior[7]. The re-
sults are consistent with the experiments[3] that motivated
the introduction of the first devil’s staircase models for the

Sm-Ca
* phase. We compare the continuous and discrete for-

malisms and discuss the appropriateness of their application
in different circumstances.

The helicoidally modulated layered structure of the Sm-
Ca

* phase in an external electric field is described by the tilt
order parameterji. In the free energy, only the terms that
account for interlayer interactions and the coupling with the
electric field are present,

Gil = o
i
S1

2
a1ji · ji+1 +

1

2
fji 3 ji+1 +

1

8
a2ji · ji+2 − E ·PiD .

s1d

The a1 and f terms account for the achiral and chiral inter-
actions between the nearest-neighboring layers[9]. The
achiral next-nearest-layer interactions are described by thea2
term. The signs of the parametersa1 and a2 determine the
preferred relative orientation of tilts in interacting layers. If
a1 anda2 are positive, anticlinic tilts are favored, and if they
are negative, synclinic tilts are favored. The chiral interac-
tions always induce a helical variation of tilt along the layer
normal. The last term in Eq.(1) describes the coupling of
piezoelectric polarizationPi =sji 3nidP0 of each smectic
layer with the external field. The polarizationPi is perpen-
dicular to the average tilt of the molecules in a particular
layer and proportional to the magnitude of the tilt, andni is
the layer normal.

The equilibrium structure is given by a set of tiltsji
=uihcosfi ,sinfij, whereui is a magnitude andfi describes
the direction of the tilt in theith smectic layer. ForE=0, the
stable structure is helicoidally modulated: the phase differ-
ence of tilts in neighboring layers is a constanta=fi+1−fi
andui =u0 for any i. When we insert the expected form of the
stable solution into the expression(1), the free energy be-
comes

Gilsad =
u 0

2

2 o
i
Sa1cosa + f sina +

a2

4
cos 2aD . s2d

The phase differencea0 that minimizes Eq.(2) for a chosen
set of model parameters solves the equation
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f = a1tana0 + a2sina0. s3d

The stable structure is helicoidal, with the zero-field pitch
p0=2pd/a0=N0d, whered is the smectic layer thickness and
N0 is some real number. In generalp0 is incommensurate
with d. Expressingf anda2 in units of ua1u, we are left with
two parametersf / ua1u anda2/ ua1u which define the zero-field
pitch. We stress that for any givenp0 infinite combinations of
model parametersa2/ ua1u and f / ua1u can be found satisfying
Eq. (3).

An external electric field that is parallel to the smectic
layer influences the structure. We do not consider the minor
influence on the magnitude of the tilt, i.e., the electroclinic
effect. Minimizing the bulk free energy(1) with respect to
the set of tilt phase anglesfi gives a set of nonlinear equa-
tions. Although the pitch extends over a few layers only, it is
in general incommensurate with the layer thickness and the
number of equations is therefore infinite.

In the numerical procedure inevitably only a finite number
of equations can be treated. The finite number of equations
and appropriate boundary conditions do not allow the period
of the structure to change. However, we expect the pitch to
grow with the field. We solved the problem of the growing
period by taking several ideal helices as the initial approxi-
mations of the zero-field structure. The helical structures
have different pitchespP,Q all commensurate with the smec-
tic layer thickness and therefore representable with rational
numbers,pP,Q=sP/Qdd. The integerP is the commensurate
period andQ is the winding number of the structure. Periodic
boundary conditions reduce the number of equations to a
controllable number. We analyze how various zero-field he-
lical structures transform in the electric field by iteratively
solving a linearized set of equations. AtEÞ0 the given zero-
field structure is deformed within one pitch, but the pitch
remains the same.

We check a variety of pitches(up to P=200 andQ=5)
and calculate and compare the energies of the corresponding
structures. The structure with the least energy among the
structures we have studied is close enough to the equilibrium
structure. Important general conclusions can be drawn on the
basis of our results.

The numerical minimization shows that all the calculated
structures have domains formed by adjacent layers which
have a component of polarization in the direction of the elec-
tric field (Fig. 1). The domains are separated from each other
by domain walls, which are formed by a few layers that have
an unfavorable orientation of polarization with a component
opposite toE. We found that all domain walls are similar,
almost symmetric around the most unfavorable orientation of
polarization antiparallel toE. There are always two neigh-
boring layers in the middle of each domain wall, which have
polarizations approximately at anglesp±b with respect to
the direction ofE (see Fig. 1).

We call the region from the middle of a domain wall to
the middle of the next domain wall a subperiod. At any field,
any calculated structure with pitchpP,Q is built only from
subperiods withMP,Q andMP,Q+1 layers, whereMP,Q is the
integer part ofP/Q. Not even in a single layer of any struc-
ture is the polarization perfectly antiparallel toE. This is the

origin of the appearance of the commensurate period of the
stable structure also, which locks to the integer number of
smectic layers. It is energetically favorable to build subperi-
ods which differ in lengths by one layer and have similar
domain walls, and this is a general conclusion.

At a certain field(the closest to) the equilibrium structure
is the one with the minimum energy among all that were
calculated. The commensurate periodP of the stable struc-
ture consists ofj subperiods of lengthM andk subperiods of
length M +1. The integersj and k do not have a common
divisor, and if one of them is 0, the other one is 1, andj
+k=Q. There arejM +ksM +1d layers in one periodP. The
pitch p of the structure is the average length of the subperiod
within one periodP. With growing electric field,j and k
change so the portion of longer subperiodsk/ s j +kd increases
until eventually all subperiods have the same length ofM
+1 layers. On further increasing the field, subperiods with
M +2 layers appear. The sequence of stable structures in an
increasing electric field is the devil’s staircase. The process is
essentially discontinuous but the commensurate periodP can
be long, with a large number of subperiods within it. The
experimental observations would inevitably show a continu-
ous dependence on observable quantities. Therefore we call
this processquasicontinuous.

At large fields close to the critical fieldEd, where the
structure eventually unwinds completely, all subperiods have
the same length. The pitchp of the minimum energy struc-
ture locks to the integer number of smectic layers and further
on increases in steps of one layer. We call the processstep-
wise unwinding and it is similar to harmless step behavior
[7]. The final step can be either drastically discontinuous,
from some finite length pitch belowEd to infinite in the
unwound structure aboveEd if a2 is large, or stepwise, ifa2
is small or zero(see Fig. 2).

From Fig. 2 we also see that different combinations of
a2/ ua1u and f / ua1u which all define the same zero-field pitch

FIG. 1. Deformed helical structure in the presence of electric
field, for p0=5 layers,a1=−1 K, a2/ ua1u=0.3, f / ua1u=−2.79, and
E=1.19 kV/mm. Commensurate periodP extends over 25 layers
and consists of three subperiods of six and one of seven layers,Q
=4. The structures of two domain walls are shown on the insets.
One is between two subperiods with six layers(ninth and tenth
layers), and the other between subperiods with six and seven layers
(15th and 16th layers).
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and therefore the same zero-field structure lead to much dif-
ferent evolution of the pitch with the field. Two general con-
clusions are made. The first: the larger the contribution of the
achiral next-nearest-layer interactionsa2, the faster the pitch
grows with the field. And the second: the final transition to
the unwound planar structure at critical fieldEd also becomes
discontinuous, and the larger thea2 the lower the critical
field.

The reason for the described behavior is the symmetry of
the bulk free energy(2) in dependence on the phase differ-
encea. With only the nearest-neighbor interactions(when
a2=0) the free energyGilsad is symmetric around the mini-
mum, which defines the equilibriuma0. The energy costs for
additional uniform twisting or unwinding of the helix for the
sameDa are the same. A balance between the elastic forces
stabilizing the helical structure and the electrostatic forces
stabilizing the unwound structure is achieved in the absence
of next-nearest-layer interactions in a continuous distortion
and unwinding of the helical structure in the electric field
until it is unwound completely(Fig. 2, the curve, corre-
sponding toa2=0). If a2Þ0, the symmetry around the mini-
mum is lost. In general, unwinding becomes energetically
favorable; therefore the unwound regions grow faster with
the field, and the domain walls also become wider. The con-
sequence is a discontinuous transition to completely un-
wound structure at some critical fieldEd, where the indexd
stands for the analysis on the basis of a discrete model[9].

Discontinuous changes of pitch result in stepwise changes
of the apparent tilt anglekul which are presented in Fig. 3.
Additional consideration of the electroclinic effect would
smooth the calculated dependence ofkul, but mostly at high
fields close to the critical field for complete unwinding. The

apparent tilt dependence on the electric field obtained would
then nicely reproduce the experimentally observed depen-
dence in[3]: The reported stepwise increase ofkul can be
clearly seen from the plot of]kul /]E in dependence onE
therein and therefore lends support to our model. To our
knowledge there are no other experiments providing such
direct evidence for discontinuous changes of the pitch with
electric field.

We also examined the limitations of the continuum model
[11,12], which was widely applied in studies of the long
pitch helical structure of the Sm-C* phase. A link between
the discrete and continuum models can be obtained by con-
tinuization of the discrete model around the equilibrium bulk
helical structure. The relevant phase-angle-dependent part of
the continuum expansion of the bulk free energy density is
usually written as[11]

gfszd =
1

2
Ku2Sdf

dz
D2

− Lu2df

dz
− EPcosf,

whereK is the elastic constant,L is the Lifshitz parameter,
and P is the magnitude of polarization, proportional to the
tilt u , P=uP0. Using discrete forms of derivatives, the dis-
crete model is translated to a continuum model and we get
the relations between the parameters

K = −
d

2
S a1

cosa0
+ a2cos2a0D andL = Kq0,

whereq0=a0/d describes the zero-field equilibrium helical
structure. The specific influences of each of the three param-
eters of the discrete model(a1,a2, and f) are hidden, when
combined into two parameters of the continuum model(K
andL). The critical fieldEc, where the complete continuous
unwinding of the helix occurs in the continuum model[12],
written with the parameters of a discrete model is

Ec = Sp

4
D2Ku2q0

2

P
= − Sp

4
D2 ua0

2

2dP0
S a1

cosa0
+ a2cos2a0D .

The results of the discrete model were compared to the pre-
dictions of the continuum model. The critical fieldEd found
numerically in the discrete model is smaller than the corre-
sponding critical field within the continuum modelEc. The

FIG. 2. The pitch grows with the field as is shown here for a
structure withp0=5 layers. For the material and model parameters
appropriate values were taken, representing a typical substance
forming the Sm-Ca

* phase: P0=100 nC/cm2,u0=p /20, and
a1/a=−1 K wherea=43104 J/m3 [13]. The parametera2 was var-
ied between 0 andua1u, and f was defined by Eq.(3) to lead top0

=5 layers in every case. At low fields the pitch grows quasicontin-
uously and jumps discontinuously in steps of one layer at large
fields. At critical field Ed the structure unwinds completely. The
pitch grows faster withE if a2 is larger. The curves end at critical
field Ed. Discrete jumps of the pitch at low fields are numerical
artifacts, due to finite discreteness of the pitch net. The commensu-
rate pitches, which were checked, are marked at the right side of the
plot.

FIG. 3. Induced apparent tilt anglekul in dependence on the
electric field, for the structure withp0=5 layers and different values
of the parametera2.
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largera2, the larger the difference between these two fields,
and also, the shorter the pitch, the larger is the difference
betweenEc andEd. This is an expected result: the continuum
expansion is appropriate, if variations of the order parameter
from layer to layer are small, which is not true for a short
pitch structure(Fig. 4).

To conclude, we found that the unwinding process of the
short pitch structure of the Sm-Ca

* phase in the external elec-
tric field reveals both a quasicontinuous devil’s staircase se-
quence locked to the commensurate periodical structures at
lower fields and a stepwise harmless staircase at fields close
to the critical electric field for complete unwinding. The
next-nearest interactions, described by thea2 term in the dis-

crete model of antiferroelectric liquid crystals, strongly influ-
ence the behavior of the helical short pitch smectic structure.
Large next-nearest interactions in general decrease the criti-
cal electric fieldEd, as well as the critical field in the con-
tinuum modelEc. The difference between theEc and numeri-
cally obtainedEd is larger if next-nearest-layer interactions
are larger. We see that two helical structures with the same
zero-field pitch behave differently in an electric field, if next-
nearest-layer interactions are different for them.

In the absence of an electric field the helical pitch is de-
fined by different microscopic interactions: chiral nearest
layers of van der Waals origin and effective achiral next-
nearest layers of flexoelectric and electrostatic origin[9]. For
a long time it was believed that chiral interlayer interactions,
described byf, are weak in comparison with achiral next-
nearest-layer interactions, described bya2. Since both types
of interaction have the same effect on the structure—they
both favor the formation of the helix—it was impossible to
experimentally separate their influence on the structure. The
analysis presented paves the way for indirect observations of
the f /a2 ratio. The pitch of the zero-field structure can be
obtained by detailed ellipsometric measurements[10,14] or
resonant x-ray scattering[8] on thick (to minimize the influ-
ence of the surfaces) free standing films. For the same ma-
terial the apparent tilt in dependence on the electric field can
be measured[3] in planar cells and compared with the theo-
retical predictions for different ratiosf /a2.
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FIG. 4. Comparison of the results obtained from discrete and
continuum calculations for helical structures with different pitches
anda2 equal to zero. The larger the pitch, the closer are the results
of the two models.
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